107 research outputs found

    Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism

    Get PDF
    The sequences of the 16S rRNA and haloalkane dehalogenase (dhaA) genes of five gram-positive haloalkane-utilizing bacteria isolated from contaminated sites in Europe, Japan, and the United States and of the archetypal haloalkane-degrading bacterium Rhodococcus sp. strain NCIMB13064 were compared. The 16S rRNA gene sequences showed less than 1% sequence divergence, and all haloalkane degraders clearly belonged to the genus Rhodococcus. All strains shared a completely conserved dhaA gene, suggesting that the dhaA genes were recently derived from a common ancestor. The genetic organization of the dhaA gene region in each of the haloalkane degraders was examined by hybridization analysis and DNA sequencing. Three different groups could be defined on the basis of the extent of the conserved dhaA segment. The minimal structure present in all strains consisted of a conserved region of 12.5 kb, which included the haloalkane-degradative gene cluster that was previously found in strain NCIMB13064. Plasmids of different sizes were found in all strains. Southern hybridization analysis with a dhaA gene probe suggested that all haloalkane degraders carry the dhaA gene region both on the chromosome and on a plasmid (70 to 100 kb). This suggests that an ancestral plasmid was transferred between these Rhodococcus strains and subsequently has undergone insertions or deletions. In addition, transposition events and/or plasmid integration may be responsible for positioning the dhaA gene region on the chromosome. The data suggest that the haloalkane dehalogenase gene regions of these gram-positive haloalkane-utilizing bacteria are composed of a single catabolic gene cluster that was recently distributed world-wide

    Metagenomic characterisation of the viral community of lough neagh, the largest freshwater lake in Ireland

    Get PDF
    Lough Neagh is the largest and the most economically important lake in Ireland. It is also one of the most nutrient rich amongst the world's major lakes. In this study, 16S rRNA analysis of total metagenomic DNA from the water column of Lough Neagh has revealed a high proportion of Cyanobacteria and low levels of Actinobacteria, Acidobacteria, Chloroflexi, and Firmicutes. The planktonic virome of Lough Neagh has been sequenced and 2,298,791 2×300 bp Illumina reads analysed. Comparison with previously characterised lakes demonstrates that the Lough Neagh viral community has the highest level of sequence diversity. Only about 15% of reads had homologs in the RefSeq database and tailed bacteriophages (Caudovirales) were identified as a major grouping. Within the Caudovirales, the Podoviridae and Siphoviridae were the two most dominant families (34.3% and 32.8% of the reads with sequence homology to the RefSeq database), while ssDNA bacteriophages constituted less than 1% of the virome. Putative cyanophages were found to be abundant. 66,450 viral contigs were assembled with the largest one being 58,805 bp; its existence, and that of another 34,467 bp contig, in the water column was confirmed. Analysis of the contigs confirmed the high abundance of cyanophages in the water column

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Surface circulation of water and ice (in Russian)

    No full text

    Characterization of IS2112, a new insertion sequence from Rhodococcus, and its relationship with mobile elements belonging to the IS110 family

    Get PDF
    A new insertion sequence (IS2112) was identified in the genome of the 1-haloalkane-utilizing bacterium Rhodococcus rhodochrous NCIMB 13064. The insertion element is 1415 bp long, does not contain terminal inverted repeats, and is not flanked by directly repeated sequences. IS2112 belongs to the IS110 family of transposable elements, and forms a separate subfamily, along with IS116, Two copies of IS2112 were found in R, rhodochrous NCIMB 13064 and one, two or three copies of a similar sequence were detected in five other 1-haloalkane-degrading Rhodococcus strains. There were no sequences homologous to IS2112 found in the l-haloalkane-degrading 'Pseudomonas pavonaceae' 170 and Rhodococcus sp, HA1 or in several Rhodococcus strains which do not utilize haloalkanes, IS2112 was originally found in plasmid pRTL1 of R. rhodochrous NCIMB 13064 which harbours genes encoding utilization of l-haloalkanes, and was located 5 kbp upstream of the haloalkane dehalogenase gene (dhaA), Although the second copy of IS2112 in strain NCIMB 13064 was also present on the pRTL1 plasmid, these sequences do not apparently comprise a single composite transposon encoding haloalkane utilization. An analysis of derivatives of NCIMB 13064 revealed that IS2112 was involved in genome rearrangements. IS2112 appeared to change its location as a result of transposition and as a result of other rearrangements of the NCIMB 13064 genome

    Localised genetic heterogeneity provides a novel mode of evolution in dsDNA phages

    Get PDF
    Abstract The Red Queen hypothesis posits that antagonistic co-evolution between interacting species results in recurrent natural selection via constant cycles of adaptation and counter-adaptation. Interactions such as these are at their most profound in host-parasite systems, with bacteria and their viruses providing the most intense of battlefields. Studies of bacteriophage evolution thus provide unparalleled insight into the remarkable elasticity of living entities. Here, we report a novel phenomenon underpinning the evolutionary trajectory of a group of dsDNA bacteriophages known as the phiKMVviruses. Employing deep next generation sequencing (NGS) analysis of nucleotide polymorphisms we discovered that this group of viruses generates enhanced intraspecies heterogeneity in their genomes. Our results show the localisation of variants to genes implicated in adsorption processes, as well as variation of the frequency and distribution of SNPs within and between members of the phiKMVviruses. We link error-prone DNA polymerase activity to the generation of variants. Critically, we show trans-activity of this phenomenon (the ability of a phiKMVvirus to dramatically increase genetic variability of a co-infecting phage), highlighting the potential of phages exhibiting such capabilities to influence the evolutionary path of other viruses on a global scale

    Web-Type Evolution of Rhodococcus Gene Clusters Associated with Utilization of Naphthalene

    No full text
    Clusters of genes which include determinants for the catalytic subunits of naphthalene dioxygenase (narAa and narAb) were analyzed in naphthalene-degrading Rhodococcus strains. We demonstrated (i) that in the region analyzed homologous gene clusters are separated from each other by nonhomologous DNA, (ii) that there are various degrees of homology between related genes, and (iii) that nar genes are located on plasmids in strains NCIMB12038 and P400 and on a chromosome in P200. These observations suggest that genetic exchange and reshuffling of genetic modules, as well as vertical descent of the genetic information, were the main routes in the evolution of naphthalene degradation in Rhodococcus. These conclusions were supported by studies of transcription patterns in the region analyzed. It was found that the nar region is not organized into a single operon but there are several transcription units which differ in the strains investigated. The narA and narB genes were found to be transcribed as a single unit in all strains analyzed, and their transcription was induced by naphthalene. The putative aldolase gene (narC) was found on the same transcript only in strains P200 and P400. In NCIMB12038 transcription of two more gene clusters was induced by growth on naphthalene. Transcription start sites for narA and narB were found to be different in all of the strains studied. Putative regulatory genes (narR1 and narR2) were transcribed as a single mRNA in naphthalene-induced cells. At the same time, a number of the genes known to be essential for naphthalene catabolism in gram-negative bacteria were not found in the region analyzed
    • …
    corecore